Research

Share      

Tech Offers

1. Highly printable hydrogel for bioprinting

This novel hydrogel developed by the centre's researchers has two distinct features: high printability and high mechanical strength. By using the new hydrogel as bio-ink in this invention, complex biological structure for biomedical applications can be designed and printed.

2. Shape memory polymer for SLA process 

A photo-sensitive polymer resin that exhibits shape memory properties suitable for 3D printing via UV curing has been developed. The shape memory polymer (SMP) displays robust shape recovery over multiple cycles that meets industrial needs.

3. Soft bioelectrode: redefining healthcare and biomedical innovation

A freestanding and flexible hydrogel based platform is created, which can be used to study tissue-electronic interactions and also be used as regenerative template. The soft platform with embedded electronics serves to carry out functions like providing electric field, heat etc. 3D bioprinting route is employed to fabricate the platform, allowing for good spacial resolution and control.

4. Geopolymer concrete printing

The 3D printable geopolymer cement is a novel technology developed by SC3DP. The technology uses industry by-products such as fly ash, slag, silica fume etc. The motivation behind using different by-products rather than ordinary Portland cement is to provide sustainable, faster and more economical urban infrastructure. It is proven that this technology is able to meet the strength requirements for various non-structural applications, reduces material wastages and construction time.

5. Method of embedding carbon nanomaterial onto polymeric powders for additive manufacturing

A method is proposed to produce carbon nanomaterial-reinforced polymeric composites in a powder form, which are applicable in powder-based AM techniques. The formulations and compositions of composite powders are tunable and controllable during manufacturing.

6. Novel titanium based alloy for better orthopaedic implants

Titanium-Tantalum (TiTa) is a potential material for biomedical applications due to its high strength to modulus ratio. However, it is still not widely used due to the difficulties in obtaining this alloy. SLM is chosen as the method to form this alloy due to its versatility in processing metallic materials and good results obtained from commercially pure titanium (cpTi) and Ti6Al4V.

7. Two-step sintering technique for printed electronics applications

This two-step sintering technology focuses on the selective sintering of metallic nanoparticles inks within a short time to minimize deterioration to the substrates during the process. The sintered patterns exhibit better electrical conductivity and surface morphologies as compared to the conventional thermally sintered patterns. This sintering technique is greatly beneficial to the field of on-demand 3D printing of electronics and the sintering of any metallic nanoparticle inks.

8. Acoustic nozzle for additive manufacturing

In a conventional dispensing or printing nozzle, the distribution of a multiphase material (solid particles/cells suspended in liquid) is random. Thus, there is a limitation of additive manufacturing (AM) to precisely locate or focus micro-particles/cells in the printing structure. Focusing micro-particles in the 3D printed structure could potentially improve the load distribution, mechanical performance and functionality of the end product.

9. Adaptive build envelope assembly for powder-bed 3D printing systems

This technology focuses on the design and utilization of an adaptive build envelope assembly for powder-bed 3D printing systems. It aims to reduce the powder consumption for a particular build height, when the actual usage does not require coverage of the entire build volume for preliminary sample deposition.