Benefits at a gl​ance

  • Value: Get up to four years PhD scholarship worth S$260,000, inclusive of monthly stipends and tuition fees.
  • Teaching opportunities: Upon confirmation of PhD candidature, students on scholarships will be engaged in teaching duties. It will add value to their curriculum vitae, and provide valuable exposure and experience for those who wish to pursue an academic career subsequently
  • Conference support: Financial support will be provided to students to present their research findings at international and local conferences,subject to good progress and existing guidelines
  • ​Overseas attachments: Attachments at reputable overseas universities/institutions are available for selected students
  • For more information about scholarships, please click here
  • For admission requirements to the PhD programmes, please click here

Interested applicants please send your CV to Ms Adeline Tan (, indicating the project you are applying for​​.

NTU Research Scholarships 

The NTU Research Scholarship is awarded to outstanding graduate students for research leading to a higher degree at the University. The Scholarship consists of a monthly stipend plus a tuition fee subsidy. Details available here.

Project 1: 3D Printing Optimal Convective Conformal Cooling Channels

Supervisor: Associate Professor Duan Fei 

Conformal cooling has shown it advance in precise cooling control in many applications. The fabrication of conformal cooling channel is complex; it requires the use of advanced manufacturing methods. Additive Manufacturing (AM) or three-dimensional (3D) printing is able to fabricate 3D solid objects of all shape from digital CAD models. The key benefit of AM is that it unlocks a new level of design freedom that was not achievable with traditional manufacturing techniques. It also provides cost savings and less material wastage. Selective laser melting (SLM) method has provide a good opportunity for the effective of conformal cooling channel fabrication. In this project, we will conduct computational fluid dynamics simulation to optimize cooling parameters, then analyze mechanical stresses and thermal performance of the resulting design. The we will use SLM to fabricate the conformal cooling channel that we will design as it has capability to process materials with high thermal conductivity like stainless steel. The printing quality will be monitored by X-ray computed tomography scanning.  Furthermore, we will conduct experiments for further comparison to the convective cooling simulations. Additionally, the submerged cooling has been found to significantly enhance heat transfer, this is another area that we propose to prepare the conformal cooling path through 3D printing for improve understanding for the applications.


Project 2: 3D-Printed Membrane Bioreactor for Waste Water Treatment

Supervisor: Assistant Professor Zhang Yi 

Co-supervisor: Associate Professor Zhou Yan

In this project, we propose to develop a novel 3D-printed membrane bioreactor that host the quorum quenching bacteria for waste water treatment. Membrane biofouling is a serious issue that hinders the broad application of membrane technology. Recently, we developed a bio-based technology using quorum quenching mechanism to control membrane fouling and extend membrane bioreactor operating period. In order to allow the quorum quenching bacteria to survive in a mixed culture condition, we need immobilize the quorum quenching bacteria and make sure they are the dominant population in the biosystem and maintain quorum quenching function during the wastewater treatment process. Our current approach is to immobilize the quorum quenching bacteria into PAC-Alginate beads. However, the effective volume/space in this setting is relatively low given only the surface layer is active. Meantime, it would be challenging to recycle the beads from the mixed liquor which may cause bead/quorum quenching bacteria loss. We aim to develop a novel 3D-printed hydrogel lattice structure to host quorum quenching bacteria. The 3D-printed lattice structure would increase the surface/volume ratio substantially and provide highly percolated pore structure for efficient nutrient/waste exchange. The proposed structure would maximize the effective volume of the material for bacteria fixing, and increase the bioactivity per unit volume. Furthermore, the lattice structure would facilitate the recycling and reduce the loss of bacteria and membrane material.